TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway
نویسندگان
چکیده
BACKGROUND Circular RNAs are a subgroup of non-coding RNAs and generated by a mammalian genome. Herein, the expression and function of circular RNA circ-TTBK2 were investigated in human glioma cells. METHODS Fluorescence in situ hybridization and quantitative real-time PCR were conducted to profile the cell distribution and expression of circ-TTBK2 and microRNA-217 (miR-217) in glioma tissues and cells. Immunohistochemical and western blot were used to determine the expression of HNF1β and Derlin-1 in glioma tissues and cells. Stable knockdown of circ-TTBK2 or overexpression of miR-217 glioma cell lines (U87 and U251) were established to explore the function of circ-TTBK2 and miR-217 in glioma cells. Further, luciferase reports and RNA immunoprecipitation were used to investigate the correlation between circ-TTBK2 and miR-217. Cell Counting Kit-8, transwell assays, and flow cytometry were used to investigate circ-TTBK2 and miR-217 function including cell proliferation, migration and invasion, and apoptosis, respectively. ChIP assays were used to ascertain the correlations between HNF1β and Derlin-1. RESULTS We found that circ-TTBK2 was upregulated in glioma tissues and cell lines, while linear TTBK2 was not dysregulated in glioma tissues and cells. Enhanced expression of circ-TTBK2 promoted cell proliferation, migration, and invasion, while inhibited apoptosis. MiR-217 was downregulated in glioma tissues and cell lines. We also found that circ-TTBK2, but not linear TTBK2, acted as miR-217 sponge in a sequence-specific manner. In addition, upregulated circ-TTBK2 decreased miR-217 expression and there was a reciprocal negative feedback between them in an Argonaute2-dependent manner. Moreover, reintroduction of miR-217 significantly reversed circ-TTBK2-mediated promotion of glioma progression. HNF1β was a direct target of miR-217, and played oncogenic role in glioma cells. Remarkably, circ-TTBK2 knockdown combined with miR-217 overexpression led to tumor regression in vivo. CONCLUSIONS These results demonstrated a novel role circ-TTBK2 in the glioma progression.
منابع مشابه
Long non-coding RNA ATB promotes glioma malignancy by negatively regulating miR-200a
BACKGROUND Glioma is one of the most common and aggressive primary malignant tumor in the brain. Accumulating evidences indicated that aberrantly expressed non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), contribute to tumorigenesis. However, potential mechanisms between lncRNAs and miRNAs in glioma remain largely unknown. METHODS Long non-coding RNA ...
متن کاملCircular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway
Circular RNAs with exonic sequences represent a special form of non-coding RNAs, discovered by analyzing a handful of transcribed genes. It has been observed that circular RNAs function as microRNA sponges. In the present study, we investigated whether the expression of circular RNAs is altered during the development of esophageal squamous cell carcinoma (ESCC). Using a TaqMan-based reverse tra...
متن کاملmiR-148b-3p inhibits malignant biological behaviors of human glioma cells induced by high HOTAIR expression
Increasing evidence suggests that long non coding (lnc)RNA and microRNA (miRNA/miR) both regulate the expression of key genes in tumorigenesis and have considerable theranostic potential. Rapid advances in bioinformatics indicate that miRNA may potentially interact with lncRNA to modulate their regulatory roles. miR-148b-3p has been reported to have a vital role in regulating tumor progression....
متن کاملDEAD-box RNA helicase DDX23 modulates glioma malignancy via elevating miR-21 biogenesis.
Upregulation of microRNA-21 (miR-21) is known to be strongly associated with the proliferation, invasion, and radio-resistance of glioma cells. However, the regulatory mechanism that governs the biogenesis of miR-21 in glioma is still unclear. Here, we demonstrate that the DEAD-box RNA helicase, DDX23, promotes miR-21 biogenesis at the post-transcriptional level. The expression of DDX23 was enh...
متن کاملMicroRNA-222 promotes tumorigenesis via targeting DKK2 and activating the Wnt/β-catenin signaling pathway.
MiR-222 in glioma can regulate cell cycle progression and apoptosis. However, the relationship between miR-222 and Wnt/β-catenin signaling pathway in glioma remains unknown. Here, we found that the Dickkopf-2 gene (DKK2) was a direct target of miR-222 by target prediction analysis and dual luciferase reporter assay. RNA interference silencing of DKK2 proved that miR-222 overexpression led to co...
متن کامل